357 research outputs found

    About the maximal rank of 3-tensors over the real and the complex number field

    Full text link
    High dimensional array data, tensor data, is becoming important in recent days. Then maximal rank of tensors is important in theory and applications. In this paper we consider the maximal rank of 3 tensors. It can be attacked from various viewpoints, however, we trace the method of Atkinson-Stephens(1979) and Atkinson-Lloyd(1980). They treated the problem in the complex field, and we will present various bounds over the real field by proving several lemmas and propositions, which is real counterparts of their results.Comment: 13 pages, no figure v2: correction and improvemen

    On the Non-Existence of Optimal Solutions and the Occurrence of “Degeneracy” in the CANDECOMP/PARAFAC Model

    Get PDF
    The CANDECOMP/PARAFAC (CP) model decomposes a three-way array into a prespecified number of R factors and a residual array by minimizing the sum of squares of the latter. It is well known that an optimal solution for CP need not exist. We show that if an optimal CP solution does not exist, then any sequence of CP factors monotonically decreasing the CP criterion value to its infimum will exhibit the features of a so-called “degeneracy”. That is, the parameter matrices become nearly rank deficient and the Euclidean norm of some factors tends to infinity. We also show that the CP criterion function does attain its infimum if one of the parameter matrices is constrained to be column-wise orthonormal

    Degeneracy in Candecomp/Parafac and Indscal Explained For Several Three-Sliced Arrays With A Two-Valued Typical Rank

    Get PDF
    The Candecomp/Parafac (CP) method decomposes a three-way array into a prespecified number R of rank-1 arrays, by minimizing the sum of squares of the residual array. The practical use of CP is sometimes complicated by the occurrence of so-called degenerate sequences of solutions, in which several rank-1 arrays become highly correlated in all three modes and some elements of the rank-1 arrays become arbitrarily large. We consider the real-valued CP decomposition of all known three-sliced arrays, i.e., of size p×q×3, with a two-valued typical rank. These are the 5×3×3 and 8×4×3 arrays, and the 3×3×4 and 3×3×5 arrays with symmetric 3×3 slices. In the latter two cases, CP is equivalent to the Indscal model. For a typical rank of {m,m+1}, we consider the CP decomposition with R=m of an array of rank m+1. We show that (in most cases) the CP objective function does not have a minimum but an infimum. Moreover, any sequence of feasible CP solutions in which the objective value approaches the infimum will become degenerate. We use the tools developed in Stegeman (2006), who considers p×p×2 arrays, and present a framework of analysis which is of use to the future study of CP degeneracy related to a two-valued typical rank. Moreover, our examples show that CP uniqueness is not necessary for degenerate solutions to occur

    Analytic and Asymptotic Methods for Nonlinear Singularity Analysis: a Review and Extensions of Tests for the Painlev\'e Property

    Full text link
    The integrability (solvability via an associated single-valued linear problem) of a differential equation is closely related to the singularity structure of its solutions. In particular, there is strong evidence that all integrable equations have the Painlev\'e property, that is, all solutions are single-valued around all movable singularities. In this expository article, we review methods for analysing such singularity structure. In particular, we describe well known techniques of nonlinear regular-singular-type analysis, i.e. the Painlev\'e tests for ordinary and partial differential equations. Then we discuss methods of obtaining sufficiency conditions for the Painlev\'e property. Recently, extensions of \textit{irregular} singularity analysis to nonlinear equations have been achieved. Also, new asymptotic limits of differential equations preserving the Painlev\'e property have been found. We discuss these also.Comment: 40 pages in LaTeX2e. To appear in the Proceedings of the CIMPA Summer School on "Nonlinear Systems," Pondicherry, India, January 1996, (eds) B. Grammaticos and K. Tamizhman

    Robust Inference of Trees

    Full text link
    This paper is concerned with the reliable inference of optimal tree-approximations to the dependency structure of an unknown distribution generating data. The traditional approach to the problem measures the dependency strength between random variables by the index called mutual information. In this paper reliability is achieved by Walley's imprecise Dirichlet model, which generalizes Bayesian learning with Dirichlet priors. Adopting the imprecise Dirichlet model results in posterior interval expectation for mutual information, and in a set of plausible trees consistent with the data. Reliable inference about the actual tree is achieved by focusing on the substructure common to all the plausible trees. We develop an exact algorithm that infers the substructure in time O(m^4), m being the number of random variables. The new algorithm is applied to a set of data sampled from a known distribution. The method is shown to reliably infer edges of the actual tree even when the data are very scarce, unlike the traditional approach. Finally, we provide lower and upper credibility limits for mutual information under the imprecise Dirichlet model. These enable the previous developments to be extended to a full inferential method for trees.Comment: 26 pages, 7 figure

    A sharp stability criterion for the Vlasov-Maxwell system

    Full text link
    We consider the linear stability problem for a 3D cylindrically symmetric equilibrium of the relativistic Vlasov-Maxwell system that describes a collisionless plasma. For an equilibrium whose distribution function decreases monotonically with the particle energy, we obtained a linear stability criterion in our previous paper. Here we prove that this criterion is sharp; that is, there would otherwise be an exponentially growing solution to the linearized system. Therefore for the class of symmetric Vlasov-Maxwell equilibria, we establish an energy principle for linear stability. We also treat the considerably simpler periodic 1.5D case. The new formulation introduced here is applicable as well to the nonrelativistic case, to other symmetries, and to general equilibria

    On computing fixpoints in well-structured regular model checking, with applications to lossy channel systems

    Full text link
    We prove a general finite convergence theorem for "upward-guarded" fixpoint expressions over a well-quasi-ordered set. This has immediate applications in regular model checking of well-structured systems, where a main issue is the eventual convergence of fixpoint computations. In particular, we are able to directly obtain several new decidability results on lossy channel systems.Comment: 16 page

    On the Distance of Databases

    Get PDF

    Reflection, radiation and interference for black holes

    Full text link
    Black holes are capable of reflection: there is a finite probability for any particle that approaches the event horizon to bounce back. The albedo of the black hole depends on its temperature and the energy of the incoming particle. The reflection shares its physical origins with the Hawking process of radiation, both of them arise as consequences of the mixing of the incoming and outgoing waves that takes place on the event horizon.Comment: 10 pages, 1 figure, Revte

    Optimal topological simplification of discrete functions on surfaces

    Get PDF
    We solve the problem of minimizing the number of critical points among all functions on a surface within a prescribed distance {\delta} from a given input function. The result is achieved by establishing a connection between discrete Morse theory and persistent homology. Our method completely removes homological noise with persistence less than 2{\delta}, constructively proving the tightness of a lower bound on the number of critical points given by the stability theorem of persistent homology in dimension two for any input function. We also show that an optimal solution can be computed in linear time after persistence pairs have been computed.Comment: 27 pages, 8 figure
    • 

    corecore